Model Uncertainty, Thick Modelling and the Predictability of Stock Returns

نویسندگان

  • Marco Aiolfi
  • Carlo Ambrogio Favero
چکیده

Recent financial research has provided evidence on the predictability of asset returns. In this paper we consider the results contained in Pesaran-Timmerman(1995), which provided evidence on predictability over the sample 1959-1992. We show that the extension of the sample to the nineties weakens considerably the statistical and economic significance of the predictability of stock returns based on earlier data.. We propose an extension of their framework, based on the explicit consideration of model uncertainty under rich parameterizations for the predictive models. We propose a novel methodology to deal with model uncertainty based on ”thick” modeling, i.e. on considering a multiplicity of predictive models rather than a single predictive model. We show that portfolio allocations based on a thick modelling strategy sistematically overperforms thin modelling. JEL Classification Numbers: G11, C53

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaotic Test and Non-Linearity of Abnormal Stock Returns: Selecting an Optimal Chaos Model in Explaining Abnormal Stock Returns around the Release Date of Annual Financial Statements

For many investors, it is important to predict the future trend of abnormal stock returns. Thus, in this research, the abnormal stock returns of the listed companies in Tehran Stock Exchange were tested since 2008- 2017 using three hypotheses. The first and second hypotheses examined the non-linearity and non-randomness of the abnormal stock returns ′ trend around the release date of annual fin...

متن کامل

Investigating the Impact of Time-varying Volatility of Macroeconomic Indices on the Predictability of Optimal Stock Portfolio Return in Tehran Stock Exchange

In this study, 3 models of Time-Varying Parameters (TVP), Dynamic Model Selection (DMS) and Dynamic Model Averaging (DMA) and a comparison with the Ordinary Least Squares (OLS) method in MATLAB in the time period 2003-2013 (with data on a monthly basis) are discussed. In the present study, the variables of unofficial exchange rate changes, interest rate changes and inflation in oil price foreca...

متن کامل

Investigating the Impact of Time-varying Volatility of Macroeconomic Indices on the Predictability of Optimal Stock Portfolio Return in Tehran Stock Exchange

In this study, 3 models of Time-Varying Parameters (TVP), Dynamic Model Selecting (DMS) and Dynamic Model Averaging (DMA) and their comparison via the Ordinary Least Squares (OLS) method in MATLAB in the time period 2003-2013 (monthly) are discussed. In the present study the variables of unofficial exchange rate changes, interest rate changes and inflation oil price forecast returns for stocks ...

متن کامل

On the Predictability of Price Fluctuations in Tehran Stock Exchange A Correlation Dimension Estimation Approach

This paper employs a general non-linear analysis tool to analyse the nature of time series associated with the price (returns) of a particular company in Tehran Stock Exchange. It is shown that the behavior of the process associated with the price (returns) time-series of this company is weakly chaotic, and due to the non-random behavior of the process, short term prediction of stock price is p...

متن کامل

On the Predictability of Price Fluctuations in Tehran Stock Exchange A Correlation Dimension Estimation Approach

This paper employs a general non-linear analysis tool to analyse the nature of time series associated with the price (returns) of a particular company in Tehran Stock Exchange. It is shown that the behavior of the process associated with the price (returns) time-series of this company is weakly chaotic, and due to the non-random behavior of the process, short term prediction of stock price is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002